
Optimal Grouping of Cores in BOSS MOOL

A Project Report

submitted by

ABHIJITH C S

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2015

THESIS CERTIFICATE

This is to certify that the thesis titled Optimal Grouping of Cores in BOSS MOOL,

submitted by Abhijith C S, to the Indian Institute of Technology, Madras, for the award

of the degree of Bachelor of Technology, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Prof. D Janakiram
Project Guide
Professor
Dept. of Computer Science and Engineering
IIT Madras, 600 036

Place : Chennai

Date :

ACKNOWLEDGEMENTS

I would like to thank my project guide and faculty advisor, Dr. D Janakiram, for all

his supervision and help during the project work. I would also like to thank the people

at Distributed & Object Systems Lab - Aditya Sapate (Dual Degree), Abhinay Bulakh

(MS Scholar), Mahender (M-Tech) and Jaya Durga (Developer from CDAC) for helping

me out at different stages of my project work. Lastly, I thank my friends Amal Joy,

Nandakishore M M, Mohammed Shafeeq E T, Anas Jafry, Hamdan M Ridwan and

Aslamah Rahman and everyone else who supported me in one way or the other during

my four years of life at IIT Madras.

i

ABSTRACT

KEYWORDS: Core Grouping, BOSS MOOL, Linux Kernel

In multi-core systems, the scheduling policy has a very important role to play in achiev-

ing maximized performance. But at the same time, the improper and unbalanced as-

signment of processes to the cores might degrade the performance. By default, all the

cores in a multi-core system are assumed to be of equal performance and computing

capacity. Any core can get assigned with any tasks by the scheduler irrespective of its

nature. Only priority of the tasks are counted. It is an attempt to classify the cores into

different sets based on certain criteria, so that each set of cores will get assigned only

with a specific type of tasks. Dedicating each set of cores to perform specific types of

tasks might improve the overall performance.

This research work attempts to suggest an optimal way of grouping cores based on

certain criteria. There are three possible ways for grouping the cores from two differ-

ent perspectives, proposed here - from cores’ perspective (cores blocking specific type

of processes from accessing it) and from processes’ perspective (restricting the pro-

cesses from getting scheduled on a predefined set of cores). The later method has lesser

number of computations and which is concluded as optimal and generic solution. Irre-

spective of the criteria for classification, the way in which the cores are grouped affects

the performance. The optimal ratio to group the cores could be based on the workload

and which could be calculated dynamically.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 INTRODUCTION 1

1.1 Proposed Grouping Methods . 2

1.2 Organization of The Thesis . 2

2 METHODS FOR GROUPING CORES 3

2.1 By Blocking Process Migrations 3

2.1.1 Process Migration . 3

2.1.2 Blocking Process Migration 4

2.1.3 Pros and Cons . 4

2.2 By Restricting Entry to Runqueue 5

2.2.1 Restricting Entry to the Runqueue 5

2.2.2 Pros and Cons . 5

2.3 By Manipulating the Affinity Mask 6

2.3.1 Affinity Mask . 6

2.3.2 Changing Affinity Mask 6

2.3.3 Pros and Cons . 6

2.3.4 Advantages Over Previous Methods 7

3 IMPLEMENTATION 8

3.1 Introduction . 8

3.2 Calculating the Affinity Mask . 8

iii

3.3 Setting the Affinity Mask . 9

3.3.1 Changing Mask at Process Creation Stage 13

3.3.2 Changing Mask at Scheduling Stage 13

3.4 Dedicating Cores for Real-Time Processes 15

4 EXPERIMENTATION AND RESULTS 16

5 CONCLUSION AND FUTURE WORK 23

5.1 Conclusion . 23

5.2 Future Work . 23

REFERENCES 24

LIST OF TABLES

3.1 Affinity Mask Macros . 9

4.1 Grouping of cores in 1:1 ratio - Grouped 16

4.2 Grouping of cores in 1:1 ratio - Alternatively 18

4.3 Grouping of cores in 1:1 ratio - Double Alternatively 19

4.4 Comparison of different grouping 20

v

LIST OF FIGURES

4.1 Screenshot of Terminal with htop running 17

4.2 Comparison of different grouping methods (using sysbench data) . . 20

4.3 Comparison of different grouping methods (using lmbench data) . . 21

vi

ABBREVIATIONS

BOSS Bharat Operating System Solution

MOOL Minimalistic Object Oriented Linux

CPU Central Processing Unit

GPU Graphics Processing Unit

OS Operating System

RB Tree Red-Black Tree

HW-Thread Hardware Thread

CFS Completely Fair Scheduler

vii

CHAPTER 1

INTRODUCTION

In order to achieve the best performance out of the available computing resources, it is

very important that the resources are to be well utilised. Core is the basic computation

unit of the CPU. It can run a single program context or multiple ones. A CPU may have

one or more cores to perform tasks at a given time.

There could be many threads to be run, but at a given time the CPU can only run

a limited number of threads which is equal to, Number of Cores × Number of HW-

threads per Core. The rest of the threads would have to wait for the OS to schedule

them whether by preempting currently running tasks or any other means. An efficient

scheduler equally and evenly distributes the threads over the cores by considering sev-

eral factors like how prior the tasks are, how long it has been waiting etc. There are

quite a few effective schedulers designed for Linux. By default the scheduling algo-

rithms assumes all the cores to be of equal computing power and performance. It may

not be the case always.

It is an attempt to study how categorizing of the cores help to improve the performance.

The available cores could be grouped in different ways with respect to its properties.

Say for example, if a total of 8 cores are available, 4 could be dedicated for processing

the real-time tasks and 4 for the other tasks. The idea is to find a novel criterion for such

classification of groups in BOSS MOOL, which might improve the performance.

In multi-core systems, though the scheduling policy has got the very important role

to play, the inefficient or unbalanced assignment of processes to the cores might cause

poor performance. The GPU could be used as a computation model to extract its useful-

ness in terms of hiding the latency as it gives a large throughput due to presence of large

number of computational units. GPU assisted scheduling can again improve the perfor-

mance further. The proposed grouping of cores in this project could be implemented

along with GPU assisted scheduling to obtain better performance.

1.1 Proposed Grouping Methods

Grouping could be done in two different perspective - either the core could restrict the

processes to run on it or the process could itself restrict going on to a core. There are

different ways of grouping cores based on different properties. In this project, I have

proposed three different ways of restricting the processes to run on the predefined set

of cores - which is essentially is the categorization of cores. One of the three, which

was the best among them in terms of effectiveness, was chosen to implement and the

performance was analysed.

1. Restricting the processes to run only on a predefined set of cores by blocking the
migrations, when a process attempts to run on a core on which it is not supposed
to run.

2. Preventing the process from entering in to the runqueue of a core on which it
is not supposed to run.

3. A process could be restricted to run on a set of predefined cores alone which could
be achieved by setting its allowed set of cores to run on.

1.2 Organization of The Thesis

Following this brief introduction, in Chapter - 2, I will brief on the three proposed meth-

ods for categorizing the groups and the possibilities for implementation. In Chapter -

3, implementation of the selected method out of the three will be discussed in detail.

Chapter - 4 contains the experimentation results and I will conclude this report with

Chapter - 5.

2

CHAPTER 2

METHODS FOR GROUPING CORES

I have proposed three different ways of grouping the cores here. Grouping of cores

essentially means restricting the processes to run only on a predefined set of cores. For

each of the methods different criteria are used. For each of the methods, its pros and

cons are also discussed here.

2.1 By Blocking Process Migrations

In order to ensure an optimal performance, each and every process must be evenly

treated considering it is priority values. When the scheduler schedules a process it takes

several factors into consideration. If a process has been waiting in the queue for a long

compared to others, it must be getting more priority over others and must be scheduled

next on the available core. Scheduler will take care of all these scheduling related

activities.

2.1.1 Process Migration

Active processes are placed in an array called the runqueue. The runqueue may contain

priority values for each process, which will be used by the scheduler to determine which

process to run next. To ensure each process has a fair share of resources, each one is run

for some time period (quantum) before it is paused and placed back into the runqueue.

When a program is stopped to let another run, the program with the highest priority in

the runqueue is then allowed to execute. If any cores other than the currently allotted

for a queued process is free to run a process, the process could be taken out from its

current computing environment and put it on the other. That is the processes are moved

from one computing environment to another which is referred to as Process Migration.

Process Migration could be either preemptive or non-preemptive. If the process mi-

gration takes place before starting the execution of the process, it is referred to as non-

preemptive. While preemptive migration is where a process is preempted, migrated and

continues processing in a different execution environment. The later type of migration

is costly as it needs to recreate the process state.

Three criteria govern when a task can be migrated to another processor. First, the task

is not running. Second, the destination processor is in the set of the allowed processors

of the task. Third, the task is not cache hot on its current processor.

2.1.2 Blocking Process Migration

If we could prevent certain types of processes from getting migrated to a set of cores,

in effect we can categorize the cores. For example, in an 8 core system, we wish to

dedicate the 4 cores for processing only real-time tasks and rest 4 cores for other tasks.

Such a categorization of cores could be achieved by blocking the migrations of real-

time process from its runqueue to the others’ runqueue.

We would have a desired predefined set of cores on which only a particular types of

processes will be running. When the kernel decides to perform the migrations in order

to ensure that each cores are getting processes evenly, as a pre-check we will be done

to check whether the task is allowed to run on target core. If it is not, the migration will

be blocked and it will continue until a core to which it could get migrated. Any process

parameter could be used for the purpose of comparing it. If create a per-CPU variable,

each processor on the system gets its own copy of that variable. It could be used to

identify the allowed set of cores in this case.

2.1.3 Pros and Cons

• Since the blocking is happening only after the initialisation of process migration,
it might cause unnecessary computations and thus leading to waste of time.

• Though it is an easy method to implement, it is not a very generic solution.

• It is difficult to dynamically set restrictions using per-CPU variables from the user
space once the kernel is booted up.

4

2.2 By Restricting Entry to Runqueue

This method could be counted as a similar alternative to the previous one, Grouping

by Blocking Migrations. The scheduler maintains a runqueue of all of the threads that

are ready to be dispatched. When a more prior process is to be scheduled, it will get

preempted and will be put on to the next available core. Unlike in the previous method,

when the process is about to be put in to the runqueue itself, it could be checked whether

the process is allowed to run on the particular core.

2.2.1 Restricting Entry to the Runqueue

The central data structure of the core scheduler that is used to manage active processes

is known as the runqueue. Each CPU has its own runqueue, and each active process

appears on just one runqueue. It is not possible to run a process on several CPUs at the

same time. The scheduler puts the processes into the runqueue when it is in the active

state, meaning when it is ready to get processed. At this stage, scheduler can check if

the process type and whether it is allowed to run on the particular core or not. If it is

not allowed to run on it, the scheduler can reject the process and assign it to the next

scheduling class.

2.2.2 Pros and Cons

• This method is quite easy to implement by having a cross-checking when the
kernel attempts to put a process in to the runqueue.

• Similar to previous method, it will not alter any properties or parameters associ-
ated with the task, that is the task_struct.

• This method will be fast enough but it might cause unnecessary computations.

• Not a generic solution. It is difficult to dynamically set restrictions using per-CPU
variables from the user space once the kernel is booted up.

• Dynamic priority of the process might get changed when it is in the runqueue. So
it is not a wise idea to choose this method as we might have to group the cores
based on priority values of the processes also.

5

2.3 By Manipulating the Affinity Mask

Processor Affinity enables the binding and unbinding of a process or a thread to the core

so that the process or thread will execute only on the designated core than any core. The

concept of affinity could be used to restrict the processes from getting scheduled on a

predefined set of cores in a system.

2.3.1 Affinity Mask

An affinity mask is a bit mask indicating what processors a thread should be run on by

the scheduler of an operating system. By default at the forking stage each process will

be set with a bit mask of all unity. Which essentially means, a process could be run on

any available core.

2.3.2 Changing Affinity Mask

Affinity mask of a process could be changed at different stages during the life cycle

of a process. It could be at forking stage when the process is being created or at pre-

scheduling stage when the process is about to get scheduled. If a program in the user

space wanted it to be run on a specific set of cores, it can achieve it by changing the

mask via system calls. On a multiprocessor system, setting the CPU affinity mask can

be used to obtain performance benefits.

For example, we can dedicate one core to a particular thread by setting the affinity

mask of that thread to specify a single core, and setting the affinity mask of all other

threads to exclude that core. It will help us to ensure maximum execution speed for that

particular thread. But, usually the masks are not manipulated for any reason by default.

2.3.3 Pros and Cons

• This method is quite complex to implement, as the cpumask might get changed
at different stages of the process life cycle.

• It will change the parameters in the task_struct. of the process. It might
require more computations.

6

• Since the process parameters itself is changed and no more comparison or any-
thing is required at later point of time during the process life cycle, it avoids
unnecessary computations.

• It is generic solution, as we are not changing the parameters bound to the cores.
Only process specific parameters are changed.

2.3.4 Advantages Over Previous Methods

In both the methods discussed previously, any process specific parameters are not being

altered permanently. It just performs a few comparisons when ever required. While in

this method, we would be changing the parameters associated with a process. Though

it might take a few more computations compared to other methods, unnecessary ones

are avoided. Since we are restricting the processes from accessing the cores via process

parameters, applications can easily modify them from user space through kernel mod-

ules. Where in the previous methods, the core had to ensure that a not-allowed process

is not getting scheduled on it.

In certain cases one will have to consider the priority of the tasks while grouping

the cores. For example when we would like to dedicate a set of cores exclusively for

real-time processes. The priority of the process could get changed anytime during the

scheduling period or even after that. The previous methods for grouping the cores will

fail in that case as it is not changing the process parameters dynamically. But the later

method will update the mask in such situations and will succeed in classifying the cores

correctly.

This method was counted as more advantageous methods over the other two. Implemen-

tation and the performance analysis of this method is discussed in subsequent chapters.

7

CHAPTER 3

IMPLEMENTATION

3.1 Introduction

The concept of Affinity Mask was manipulated to restrict the process from accessing

a predefined set of cores. Based on the criteria for grouping, the Affinity Mask of the

applicable processes could be changed in appropriate locations and thus it could be

ensured that the processes are being scheduled and run only on the desired set of cores.

The challenge is in setting the Affinity Mask (cpumask) where ever applicable. It has

to be also ensured that the change is not affecting the performance hugely. The main

aim is to come up with an optimal grouping strategy with lesser number of computations

and improved performance.

3.2 Calculating the Affinity Mask

A CPU affinity mask is represented by the cpu_set_t structure (called as ’CPU Set’)

pointed to by mask. The cpu_set_t data structure represents a set of cores. CPU

sets are used by sched_setaffinity and similar interfaces. The data structure is

implemented as a bitmap - it states on which all cores a particular process is allowed

to run. The generic structure of bit map (see Listing - 1) is defined in include/linux/-

types.h, which is nothing more than an array of unsigned longs with a user-supplied

name and length.

Listing 1: Generic Structure of bitmap

#define DECLARE_BITMAP(name,bits) \

unsigned long name[BITS_TO_LONGS(bits)]

}

Manipulation of the masks could be done by the following predefined macros, in Table

- 4.1. In our case, we have will have to define a function using these macros which will

return the desired cpumask. We can also use macros like CPU_AND(), CPU_OR(),

CPU_XOR() and CPU_EQUAL() to perform logical operations on the CPU sets.

CPU_ZERO() Clears cpuset, so that it contains no CPUs.

CPU_SET() Add CPU cpu to cpuset.

CPU_CLR() Remove CPU cpu from cpuset.

CPU_ISSET() Test to see if CPU cpu is a member of cpuset.

CPU_COUNT() Return the number of CPUs in cpuset.

Table 3.1: Affinity Mask Macros

For example, if we wish to restrict a particular set of processes to run only on first

four cores out of 8 available cores, firstly we have to calculate the cpumask using the

above mentioned macros and then reset their masks. Bit map for the same would be

11110000 and its corresponding hexadecimal string would be F0.

Once we get the cpumask calculated using the macros or directly by setting the bit

map, the mask has to be assigned to the process. The sched_setaffinity() can

help us there.

3.3 Setting the Affinity Mask

In order to set the mask to a process we need to get the pointer to the correspond-

ing task_struct and the desired mask to be set. The sched_setaffinity()

function sets the CPU affinity mask of the thread whose ID is pid (which is available

from task_struct) to the value specified by the mask. In case the pid is zero,

then the calling thread will be used. If the thread specified by pid is not currently

running on one of the CPUs specified in mask, then that thread is migrated to one of

the CPUs specified in mask, by default. The affinity mask is a per-thread attribute that

can be adjusted independently for each of the threads in a thread group. After a call to

sched_setaffinity(), the set of CPUs on which the thread will actually run is

9

the intersection of the set specified in the mask argument and the set of CPUs actually

present on the system. Once the mask is set with the desire one, the restrictions will

come by default. The scheduler will consider the mask while scheduling the processes.

The core itself does not have to worry about restricting certain processes from running

on it. The affinity mask will take care of it.

Task Structure

The processes in Linux are a group of threads and the kernel schedules the threads, not

the processes. The term task is generally used to represent a Thread. The data struc-

ture that contains all the information about a specific task is task_struct which is

defined in include/linux/shed.h header file. This structure contains all of the necessary

data to represent the process, along with a plethora of other data for accounting and to

maintain relationships with other processes (parents and children).

Refer Listing - 2, which shows some of the important parameters in task_struct

which will come in to my discussion in subsequent sections.

The state variable is a set of bits that indicate the state of the task. The following are

the most common states. There are a few more different states mentioned in ./linux/in-

clude/linux/sched.h.

• TASK_RUNNING - Process is running or in a run queue about to be running.

• TASK_INTERRUPTIBLE - If the process is sleeping.

• TASK_UNINTERRUPTIBLE - Process is sleeping but unable to be woken up.

• TASK_STOPPED - If the process is stopped.

Each process is also given a priority (called static_prio), but the actual priority of

the process is determined dynamically based on loading and other factors. The lower

the priority value, the higher its actual priority.

The tasks field provides the linked-list capability. It contains a prev pointer (point-

ing to the previous task) and a next pointer (pointing to the next task). The pid refers

to the unique ID of the process. Other parameters shown in the Listing - 2 is out of

scope in our discussion.

10

Listing 2: A small portion from task_struct

struct task_struct {

volatile long state;

void *stack;

unsigned int flags;

int prio, static_prio;

struct list_head tasks;

struct mm_struct *mm, *active_mm;

pid_t pid;

pid_t tgid;

struct task_struct *real_parent;

char comm[TASK_COMM_LEN];

struct thread_struct thread;

struct files_struct *files;

...

};

11

Accessing task_struct Parameters

In most cases, processes are dynamically created and represented by a dynamically al-

located task_struct. One exception is the init process itself, which always exists

and is represented by a statically allocated task_struct. When a process is created

by fork() system call, the whole content of the parent task_structwill be copied

to the child. All the processes in Linux is collected in to a task list - but it is not acces-

sible from the userspace. For our purpose, we need it to be made accessible from the

userspace. A small code was inserted into the kernel in the form of a module in order

to retrieve the information about each task. The soul part of the kernel module is shown

in Listing 3.

Listing 3: Kernel Module to fetch task information to the userspace

...

/* Initialize a point to halt the iteration */

struct task_struct *task = &init_task;

/* Iterate through the linked list of tasks

until it finds the init_task again */

do {

printk(KERN_INFO "%s[%d]_parent_%s\n",

task->comm, task->pid, task->parent->comm);

} while ((task = next_task(task)) != &init_task);

...

12

3.3.1 Changing Mask at Process Creation Stage

A new process is created from the userspace essentially via do_fork(). Even for

the creation of kernel threads, firstly kernel_thread() is called which in turn calls

do_fork() after making some initialisations. It has another partner function which is

copy_process(). The task_struct of the parent is ’blindly’ copied to the child.

The copy_process function, called by do_fork is where the new process is cre-

ated as a copy of the parent. The copy_process function calls dup_task_struct

function which allocates a new task_struct and copies the current process’s de-

scriptors into it.

At this stage we could manipulate the affinity mask cpus_allowed, with the desired

mask. It is not compulsory to change it here. But there is a narrow possibility that the

newly created process might get scheduled immediately. It will save such cases. Later

the do_fork function calls to wake_up_new_task to make the new task ’running’.

3.3.2 Changing Mask at Scheduling Stage

About the Scheduler

The default scheduler is Completely Fair Scheduler (CFS). CFS ensures that each pro-

cess is getting fair amount of the processor. CFS maintains a time-ordered red-black

tree rather than the tasks in a run queue, which has been done in prior Linux sched-

ulers. With tasks (represented by sched_entity objects) stored in the time-ordered

red-black tree, tasks with the gravest need for the processor (lowest virtual runtime) are

stored toward the left side of the tree, and tasks with the least need of the processor

(highest virtual runtimes) are stored toward the right side of the tree. The scheduler

chooses the left-most node of the red-black tree to schedule next to maintain fairness.

The task accounts for its time with the CPU by adding its execution time to the virtual

runtime and is then inserted back into the tree if runnable. In this way, tasks on the left

side of the tree are given time to execute, and the contents of the tree migrate from the

right to the left to maintain fairness. Therefore, each runnable task chases the other to

maintain a balance of execution across the set of runnable tasks.

13

The generic schedule() function, which preempts the currently running task. The

currently running preempted task is returned to the red-black tree through a call to

put_prev_task through the scheduling class. The schedule functions picks up

the next task to schedule by calling pick_next_task function. It will just pick up

the left-most task from the red-black tree and returns the associated sched_entity,

which includes the rb_node reference, load weight, and a variety of statistics data.

Calling task_of() will identify the task_struct and the generic scheduler fi-

nally provides a processor to this task.

Setting the Mask

Each task belongs to a scheduling class, sched_class, which defines a set of func-

tions that decides the behavior of the scheduler - which in turn determines how a task

will be scheduled. The schedule() function internally calls the __setscheduler

function (shown in Listing - 4) which essentially assigns the scheduler class to a task.

This is where the priority value of the task is compared and put into the corresponding

scheduler class. Since this is the entry point of a task to the scheduler, the affinity mask

must be changed with the desired mask. We can define a function which could be called

from the __setscheduler function which will fetch the desired mask and replace

the default mask.

Listing 4: Part of schedule() function

static void __setscheduler (struct rq *rq,

struct task_struct *p, const struct sched_attr *attr){

__setscheduler_params(p, attr);

p->prio = normal_prio(p);

if (dl_prio(p->prio))

p->sched_class = &dl_sched_class;

else if (rt_prio(p->prio))

p->sched_class = &rt_sched_class;

else

p->sched_class = &fair_sched_class;

}

14

3.4 Dedicating Cores for Real-Time Processes

The grouping of cores was tested by dedicating a set of cores to perform only the real-

time processes. The aim was to group all the available 32 cores in the laboratory ma-

chine, in certain ratio such that a set of cores are dedicated for running the real-time

tasks alone. This section explains only the way it was achieved.

The suggested way for implementing it was as follows. Define a function, say name

it set_cpumask(), which will give you the desired mask to be set checking its

priority value. Say we wish to dedicate first 16 cores exclusively for real-time pro-

cesses and next 16 for other processes out of the total 32 available cores. Let the

set_cpumask function take the task_struct as its input. Based on the prior-

ity value in the task_struct, if it is in real-time range (that is 0-99 range), set the

mask as FFFF0000.

The mask could be changed at the process is creation stage and when it gets sched-

uled by the scheduler. During process creation, when the do_fork function is called,

call the set_cpumask function also. Do the same when the scheduler class is getting

assigned for a process. It could be thus ensured that only the real-time processes are

getting scheduled on the first 16 set of cores out of available 32.

This proposed method was implemented in BOSS MOOL along with another project ti-

tled Grouping of Cores and Loadbalancing in BOSS MOOL. Experimentation was done

by me on it to analyse its performance. Results of the same could be found in the next

chapter.

15

CHAPTER 4

EXPERIMENTATION AND RESULTS

Implementation of the method, discussed in Section - 3.4 was experimented with the

several cases to analyse the performance. The basic aim was to find out the factors

affecting the performance in grouping of cores and how grouping could be made more

optimal. The experimentation was performed on the laboratory machine which has 32

cores. Benchmarking tools used for this purpose were sysbench and lmbench.

Experiment - 1

Cores were grouped in a ratio 1:1 dedicating half of the available cores for real-time

processes alone. Cores were ordered in XXX...YYY... fashion, that is the cores ded-

icated for processing real-time tasks were grouped together. The table 4.1 shows the

time taken to run different loads in such a grouping of cores, using different benchmark

tools. Load is in ’No. of Threads’ and the time recorded is in ’Milli Seconds (ms)’.

Benchmark Tool - sysbench
Load Test-1 Test-2 Test-3 Test-4 Test-5 Average
10000 7471.65 7402.73 7396.08 7434.62 7216.44 7384.30
5000 3687.71 3900.53 4172.12 4415.73 4015.73 4038.36
1000 929.44 993.18 996.58 1014.09 1001.51 986.96
500 463.18 477.55 465.09 470.35 454.41 466.12

Benchmark Tool - lmbench
Load Test-1 Test-2 Test-3 Test-4 Test-5 Average
10000 6982.23 7002.36 6985.23 6873.94 7056.41 6980.034
5000 3687.71 3900.53 4172.12 4415.73 4015.73 4038.364
1000 930.26 958.12 971.46 912.78 936.49 941.822
500 426.98 436.71 430.12 428.78 411.51 426.82

Table 4.1: Grouping of cores in 1:1 ratio - Grouped

Observation

It was observed using htop that half the cores were dedicated only for the real-time

tasks and remaining for the rest. The figure - 4.1 is a screenshot of Terminal window

with htop running while the benchmark tool was running in background. It can be

seen from the figure that only half the cores are getting assigned with processes as the

benchmark tool is not creating any real-time threads at the given instance.

Figure 4.1: Screenshot of Terminal with htop running

17

Experiment - 2

Cores were grouped in a ratio 1:1 dedicating half of the available cores for real-time

processes alone. Cores were ordered in X-Y-X-Y-X-Y... fashion, that is alternatively.

The table 4.2 shows the time taken to run different loads in such a grouping of cores,

using different benchmark tools. Load is in ’No. of Threads’ and the time recorded is

in ’Milli Seconds (ms)’.

Benchmark Tool - sysbench
Load Test-1 Test-2 Test-3 Test-4 Test-5 Average
10000 11797.78 11802.58 11690.77 11803.25 11723.28 11763.53
5000 6376.01 6377.33 6370.92 6332.87 6369.18 6365.26
1000 1037.17 1045.88 1035.75 1049.75 1023.83 1038.48
500 471.53 481.61 487.71 490.41 503.27 486.91

Benchmark Tool - lmbench
Load Test-1 Test-2 Test-3 Test-4 Test-5 Average
10000 10236.25 10892.12 11002.31 10521.26 10072.13 10544.814
5000 5892.13 5761.26 5396.21 5846.12 5916.38 5762.42
1000 1021.84 1010.89 896.36 956.12 989.76 974.994
500 426.38 419.46 456.28 436.78 503.27 448.434

Table 4.2: Grouping of cores in 1:1 ratio - Alternatively

18

Experiment - 3

Cores were grouped in a ratio 1:1 dedicating half of the available cores for real-time

processes alone. Cores were ordered in XX-YY-XX-YY-... fashion, that is double al-

ternatively. The table 4.3 shows the time taken to run different loads in such a grouping

of cores, using different benchmark tools. Load is in ’No. of Threads’ and the time

recorded is in ’Milli Seconds (ms)’.

Benchmark Tool - sysbench
Load Test-1 Test-2 Test-3 Test-4 Test-5 Average
10000 10598.86 10289.76 10613.61 10914.41 10481.73 10579.67
5000 5895.24 5855.49 5785.71 5782.63 5689.32 5801.68
1000 1480.26 1517.68 1465.81 1506.37 1454.23 1484.87
500 722.63 721.29 700.38 686.27 769.61 720.04

Benchmark Tool - lmbench
Load Test-1 Test-2 Test-3 Test-4 Test-5 Average
10000 10023.58 10096.36 10189.65 10127.86 10097.92 10107.074
5000 5623.78 5469.35 5583.47 5632.15 5557.12 5573.174
1000 1396.56 1375.81 1412.01 1456.48 1386.57 1405.486
500 683.46 693.45 675.23 705.26 698.73 691.226

Table 4.3: Grouping of cores in 1:1 ratio - Double Alternatively

19

Comparison of Different Groupings

The table 4.4 has the data from two different benchmark tools, sysbench and lmbench.

The average time (in ’ms’) taken for the processing of corresponding load (in ’No. of

Threads’) is recorded in the table.

Benchmark Tool - sysbench
Load 10000 5000 1000 500
Alternate 11763.53 6365.26 1038.48 486.91
Double Alternate 10579.67 5801.68 1484.87 720.04
Grouped 7384.30 4038.36 986.96 466.12

Benchmark Tool - lmbench
Load 10000 5000 1000 500
Alternate 10544.81 5762.42 974.99 448.43
Double Alternate 10107.07 5573.17 928.61 430.29
Grouped 8780.03 5338.36 941.82 426.82

Table 4.4: Comparison of different grouping

The figures - 4.2 and 4.3 are the graphs (Load-vs-Time) plotted using the data obtained

from different grouping methods - Alternate, Double Alternate and Grouped. First

graph uses the data from sysbench tool and the later one uses data from lmbench tool.

Figure 4.2: Comparison of different grouping methods (using sysbench data)

20

Figure 4.3: Comparison of different grouping methods (using lmbench data)

Observation

For relatively huge workloads, it is observed that it takes lesser time for processing when

the cores are grouped together (as XXX...YYY..) compared to the alternate grouping

(as X-Y-X-Y-X-Y...) and the double alternate grouping (as XX-YY-XX-YY-...).

21

Experiment - 4

The ratio in which the cores were grouped, was altered to 2:1 (ie., two-third of the total

available cores were dedicated for real-time tasks and the remaining for other tasks),

1:2, 3:1 and 1:3 - for the purpose of experimentation. Since the threads created by the

benchmark tools were not distinguishable as real-time or the other, it was not useful.

The results of the Experiment - 4 could not conclude anything substantially. It could

be inferred that, the ratio in which the cores are to be grouped must be based on the

nature of the workload. Say for example, if the major percentage of the workload is

real-time tasks, more number of cores must be allocated to it, in order to achive optimal

performance.

22

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Grouping the available number of cores in a multi-core system and dedicating each

set of cores to perform a certain type of tasks would improve the overall performance.

There are different possible ways for grouping the cores from two different perspec-

tives. First one from the cores’ perspective where the cores could block certain type

of processes from accessing it. Second one from the processes’ perspective where the

process itself could restrict is getting scheduled on a predefined set of cores.

The later one takes lesser number of computations and avoids unnecessary ones, and

thus more optimal compared to other methods. Being a more optimal and generic solu-

tion, it is concluded to be the more effective way of grouping the cores. Irrespective of

the ratio in which the cores are grouped, better performance is obtained when the cores

are grouped together. The alternate arrangement of cores takes more time especially

when the workload is huge.

5.2 Future Work

The criteria for classifying the cores could be different. It is difficult to generalize

an optimal ratio in which the cores could be grouped. The ratio could be calculated

dynamically at runtime as it is workload dependent. Finding a generalized solution to

calculate the optimal ratio dynamically would improve the performance further.

REFERENCES

[1] W. Mauerer Professional Linux Kernel Architecture (2008). Wrox Press Ltd.,
Birmingham, UK. ISBN 0470343435.

[2] Bovet, Daniel P. and Marco Cesati Understanding the Linux Kernel (2005).
O’Reilly Media, Inc.

[3] Pabla, Chandandeep Singh Completely Fair Scheduler (2009).
Linux Journal 2009.184 (2009): 4

[4] Janakiram Dharanipragada, Hemang Mehta, and S. J. Balaji Dhara: A Ser-
vice Abstraction-Based OS Kernel Design Model (2012). Engineering of Complex
Computer Systems (ICECCS), 2012 17th International Conference on. IEEE

[5] M. Tim Jones Anatomy of Linux Process Management (2008).
http://www.ibm.com/developerworks/library/l-linux-process-management [URL]

[6] Volker Seeker Process Scheduling in Linux (2013). CriticalBlue - The University
of Edinburgh. http://criticalblue.com/uploads/2013/12/linux-scheduler.pdf [URL]

[7] Bowden T. and B. Baue The proc File System (1999, 2009 - recent update).
https://www.kernel.org/doc/Documentation/filesystems/proc.txt [URL]

[8] Linux Kernel Documentation. https://www.kernel.org/doc [URL]

24

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Proposed Grouping Methods
	Organization of The Thesis

	METHODS FOR GROUPING CORES
	By Blocking Process Migrations
	Process Migration
	Blocking Process Migration
	Pros and Cons

	By Restricting Entry to Runqueue
	Restricting Entry to the Runqueue
	Pros and Cons

	By Manipulating the Affinity Mask
	Affinity Mask
	Changing Affinity Mask
	Pros and Cons
	Advantages Over Previous Methods

	IMPLEMENTATION
	Introduction
	Calculating the Affinity Mask
	Setting the Affinity Mask
	Changing Mask at Process Creation Stage
	Changing Mask at Scheduling Stage

	Dedicating Cores for Real-Time Processes

	EXPERIMENTATION AND RESULTS
	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES

